

Stiftungen im Kontext von Digitalisierung und Lernen Ein Blick von außen

Prof. Dr.-Ing. Philipp Slusallek

Deutsches Forschungszentrum für Künstliche Intelligenz Intel Visual Computing Institute Universität des Saarlandes

Übersicht

Stiftungen

- Digitalisierung
- Digitales Lernen

Herausforderung am Beispiel Industrie-4.0

Digitales Lernen in Virtuellen Welten

Stiftungen

Wichtige gesellschaftliche Rolle

Freiheit zwischen Staat, Wirtschaft, und privatem Engagement

Lange historische Tradition

- Andenken
- Gemeinnützigkeit, Unterstützung
- Innovation als "Speerspitze"

Beispiele für Innovation durch Stiftungen

- Fuggerei
- Stiftungsprofessuren
- Stiftungen in Politik und Gesellschaft (speziell in den USA)

Digitalisierung

Definition

- "Überführung von analogen Größen in abgestufte Werte zur elektronischen Verarbeitung, Speicherung und Übertragung"
- Ziel: Effizienz und Reproduzierbarkeit

Digitale Sensoren (Internet of Things, IoT)

- Erlauben die Erfassung unserer Welt
 - Temperatur, Ton, Bilder, Videos, Luftfeuchtigkeit, Interaktionen, ...
 - Alles was man messen kann, kann verarbeitet & gespeichert werden

Digitalisierung

Digitale Vernetzung

- Internet: Jederzeit und überall Zugriff auf alle Informationen
 - Fast jederzeit, fast überall, fast alle
- Aber auch inhärente Abstufung beim Zugriff (Bandbreite)
 - Verarbeitung extrem großer Datenmengen "vor Ort"

Digitale Verarbeitung

- Exponentielles Wachstum bei Speicherung und Verarbeitung
- Möglichkeiten der Verknüpfung von beliebigen Daten
- Fast unbeschränkte Möglichkeiten aber auch Gefahren

Gesellschaftlicher Dialog & gemeinsame Werte

Digitales Lernen

- Lernen: Aneignung von neuem "Wissen":
 - Abstrakte Fakten, Regeln und Zusammenhänge
 - Verhalten und Handlungen
 - Bewegungen und Reaktionen
 - Emotionales Lernen
 - Soziales und gesellschaftliches Lernen

Lernen: Ein komplexer, unverstandener Prozess

- Nicht nur die Präsentation von Inhalten (a la MOOCs)
 - Motivation, Eigeninitiative, Verknüpfungen, Interaktion, Erinnern, ...
- eLearning: Was brauchen wir dann?

Digitales Lernen

Ziel: Situiertes Lernen

- Also: Einbettung von Lernen in die "Handlungssituation"
 - Vom Lernen aus dem Handbuch, ...
 - ... zum Lernen "an der Maschine"
- Aber wo kommen die (Lern)-Maschinen her?

Lösung: Virtual & Augmented Reality (VR/AR)

- Digitales Lernen in der virtuellen Welt
- Extremes Beispiel: Stehen an einem virtuellen Kliff
 - Extrem emotionale und auch körperliche Reaktionen
- Hardware ist verfügbar oder wird es bald (Oculus Rift, ...)
- In dem Markt ist dramatisch viel Geld (Facebook, Google, ...)
 - Alle wesentlichen Engineering-Probleme werden gelöst werden

Beispiel: Industrie 4.0

Flexibilität der Produktion

- Globalisierung
- Verfügbarkeit neuer Technologien
- Ressourcenverknappung
- Produktion wird komplexer
- Essenziell: Fähigkeit zur adäquaten Bedienung und Modifikation von Anlagen & Wertschöpfungsketten

Flexibilität der Arbeit

- Demographischer Wandel
- Veränderte Rolle des Menschen
- Bedürfnisse von Mitarbeitern
- Radikale Veränderungen der Arbeit im produzierenden Gewerbe
- Aus- und Weiterbildung essenziell zur Qualifikation

Flexibilität und Anpassungsfähigkeit (Lernen) als zentrale Herausforderung für Unternehmen und Mitarbeiter

Virtuelle Technologien: Qualifikation

Assistenzsysteme zur Unterstützung der Qualifikation von Mitarbeitern

- Verständnis von industriellen
 Prozessabläufen setzt hohes Maß
 an Flexibilität und Motivation beim
 Lernenden voraus
- Interaktion mit virtuellen Welten eröffnet didaktische Potenziale, die mit traditionellen Lehransätzen nicht realisierbar sind
- Realitätsnahe virtuelle Lernumgebungen ermöglichen gezielte Qualifikation von Mitarbeitern – auch abseits der Produktionslinie

Realitätsnahe Aus- und Weiterbildung

- Virtuelles Abbild der Produktionsanlage unter Einbezug historischer Realdaten
- Simulation typischer Fehlersituationen

Effiziente Erstellung Lerninhalte

- Wiederverwendung von 3D-Modellen
- Nutzung von 3D-Webtechnologien
- Nutzung von Templatemechanismen

Virtuelle Technologien: Instandhaltung

Assistenzsysteme zur Unterstützung der Mitarbeiter im Bereich Wartung und Instandhaltung

- Leistungsfähigkeit von Maschinen und Anlagen sichert Investition über den gesamten Lebenszyklus
- Zunehmende Vernetzung von
 Objekten, Maschinen und Anlagen
 verändert Anforderungen an den
 Technischen Kundendienst (TKD)
- Assistenzsysteme nicht nur zur Unterstützung in der Produktion sondern auch für den TKD relevant

Echtzeitunterstützung Einbezug von Realdaten (z.B. Fehlermeldungen einer Maschine)

Handlungsanweisungen Unterstützung bei der Ausführung von Serviceprozessen

Fehler-dokumentation

Dokumentation des Serviceprozesses und Feedback an Zielgruppen

Digitales Lernen in virtuellen Welten

- Erweiterung von "Learning by Doing"
 - Duales System der Ausbildung in Deutschland
 - Projektbezogene Veranstaltungen an der Uni
- Situiertes Lernen über "Learning by (virtually) Doing"
 - Virtuelle Konstruktion der Handlungsumgebung
 - Inkrementelle Präsentation von Lernszenarien
 - Nutzermodell und Echtzeit-Feedback an den Lernenden
 - Anpassung der Lernumgebung (individuell & global)
- Aber (!)
 - Ersetzt nicht Lesen das Handbuchs, macht es aber optional

Forschungs-Herausforderung: Einfach verfügbare Systeme

- XML3D: Interaktive 3D-Welten im Web (HTML5)
 - 3D-Umgebungen
 - Geometrie & Aussehen
 - Semantische Annotationen
 - Bedeutung und Funktion
 - Virtuelle Charaktere
 - Menschliche Körper
 - Agenten & künstlicher Intelligenz
 - "Intelligentes" und adaptives Verhalten

Dual Reality

Anbindung an Daten/Sensoren der realen Maschinen

Forschungs-Herausforderung: Realistische Bewegungen

- Aufnahme von realen Bewegungsdaten
 - Werker in der Automobilproduktion
- Maschinelles Lernen der Bewegungsmuster (Model)
 - Statistische Modelle: Schritte, Greifen, ...
 - Zukünftig mit physikalischen Modellen
- Spezifikation der Aufgabe
 - Natürlich-sprachlich mit semantischem 3D-Modell
- Bewegungssynthese (in Echtzeit)
 - Suche der besten Sequenz an Bewegungsmuster
 - Verfeinerung der Übergänge
 - Zukünftig: Extrapolation mittels Physik und Ergonomie

Videos

Zusammenfassung

Lernen als gesellschaftliche Herausforderung

- Numerisch haben wir gegen "die Chinesen" keine Chance
- Aber wir haben andere gesellschaftliche Voraussetzung
- Die sollten wir nutzen

Digitale Systeme zu Unterstützung des Lernen

- Virtuell situiertes Lernen (fast) immer und überall
- Größter Mehrwert in Unternehmen, aber auch anderswo

Selbstverständnis von Stiftungen

- Relative Freiheit von Regeln und Zwängen
- Mut zur "Speerspitze" des gesellschaftlichen Fortschritts

